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Abstract

The Principle of Inclusion-Exclusion is perhaps one of the most famous theorems in combina-
torics. Yet many students only know that |S1 ∪ S2| = |S1| + |S2| + |S1 ∩ S2|, and not what PIE
actually is or how to prove it. We remedy this here: this document explains what the theorem
states, what it really means, and why it is true.

Preliminary knowledge assumed:

1. A basic understanding of set theory.

2. Awareness of special cases of PIE and their proofs, e.g. |A ∪B| = |A|+ |B| − |A ∩B|.

1 The Theorem

Theorem 1.1 (The Principle of Inclusion-Exclusion).
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This is the most precise and compact way that PIE can be stated. Let’s unravel it now!

1.1 The Left Hand Side
Since A has sets as its elements, we can write it in the form A = {S1, . . . , Sn}, where each Si is a set.
Then the left hand side describes something familiar: the number of (distinct) elements in at least one
of S1, . . . , Sn.

1.2 The Right Hand Side
First of all, what is the set of all possible A′? It turns out that A′ spans the set of all possible subsets
of {S1, . . . , Sn}. If you know what a powerset is, then the set of all possible A′ is just the powerset
of A.

Let’s ignore the factor of −1 for a second and focus on the
⋂

mess. It’s just the intersection of
some of the sets in {S1, . . . , Sn}. The way ∑

A′⊆A

works, every possible intersection involving some combination of {S1, . . . , Sn} will be considered.
The factor of −1 essentially states:
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1. We add the size of the intersection of an odd number of sets Si,

2. and we subtract the size of the intersection of an even number of sets S.

To simplify, we will assume from now on that A′ is non-empty when referring to∣∣∣∣∣ ⋂
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∣∣∣∣∣ .
It doesn’t end up changing the sum, because the size of the union of no sets is (by definition) 0.

1.3 Examples of PIE
We analyze the 2 and 3 set cases of PIE to get an idea of what is going on.

Example 1.2 (PIE for Two Sets).

Suppose A = {S1, S2}. Then PIE states

|S1 ∪ S2| = (−1)|{S1}|+1|S1|+ (−1)|{S2}|+1|S2|+ (−1)|{S1,S2}|+1|S1 ∩ S2|
= |S1|+ |S2| − |S1 ∩ S2|.

For the three set case, we are not going to explicitly show why the signs are what they are, mostly
because the equation would be too long to display on one line.

Example 1.3 (PIE for Three Sets).

Suppose A = {S1, S2, S3}. Then PIE states

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3| − |S1 ∩ S2| − |S2 ∩ S3| − |S3 ∩ S1|+ |S1 ∩ S2 ∩ S3|.

Make sure you understand how these specific cases of PIE are derived from the general theorem!

2 The Proof

2.1 Preliminaries
We first establish a few facts about sets.

Definition 2.1 (Disjoint Sets).

We say sets A and B are disjoint if A∩B = {}; that is, the intersection of A and B is the empty
set.

We define disjoint sets just to reduce the ratio of symbols to words in our proof.

Theorem 2.2.
If A and B are disjoint, then

|A ∩ S|+ |B ∩ S| = |(A ∪B) ∩ S|.



Theorem 2.3.
As a corollary, if sets A1, . . . , An are pairwise disjoint, then
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Convince yourself both of these theorems are true.

2.2 Breaking it down into elements
Let

x1, . . . , xm =
⋃
S∈A

S.

In other words, let x1, . . . , xm be all the elements in at least one of S1, . . . , Sn. Note that m is the size
of the union of S1, . . . , Sn.

If we can show that for each x ∈ {x1, . . . , xm},
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then by Theorem 2.3,
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by definition, so we can simplify the equation further into
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which is exactly what we want to show.

2.3 Looking at an individual element
So what were we really doing in the previous section? Intuitively, each term of the form
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represents the number of times that x is “counted” in the right-hand side of PIE. And really, the

reason we use e.g. the two set case of PIE is to ensure each element is counted exactly once when
looking at |S1 ∪ S2|. We are doing the same thing here, but on a more general level.

Let’s look at an arbitrary element of x from now on. Define B to be the subset of A such that

x ∈ S ⇐⇒ S ∈ B.

In other words, B is the set of every S such that x is an element of S.



Furthermore, note that ∣∣∣∣∣ ⋂
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if and only if {} ⊊ A′ ⊆ B. (Otherwise, the intersection has size 0.) So
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is equivalent to the difference between the number of non-empty subsets of B with odd size and

the number of non-empty subsets of B with even size.
At this point, I recommend you do at least one of the following exercises for intuition on the

argument that is about to follow.

Problem 2.4. How many sequences of n coin flips contain an even number of heads?

Problem 2.5 (AIME 1983/13). For {1, 2, 3, . . . , n} and each of its non-empty subsets a unique al-
ternating sum is defined as follows. Arrange the numbers in the subset in decreasing order and
then, beginning with the largest, alternately add and subtract successive numbers. For example, the
alternating sum for {1, 2, 3, 6, 9} is 9 − 6 + 3 − 2 + 1 = 5 and for {5} it is simply 5. Find the sum of
all such alternating sums for n = 7.

By definition, there is some element S1 of B, i.e. x is an element of some member of A — otherwise
x would not be in {x1, . . . , xm}. Note that every non-empty subset A′ of B not containing S1 can be
paired off with the subset A′ ∪ {S1}. This leaves us with one unpaired subset: {S1}.

Thus the number of non-empty subsets of B with odd size is exactly 1 greater than the number of
non-empty subsets of B with even size, as desired.

2.4 Taking stock of it all
So what did we do in the proof?

1. We established in Subsection 2.1 that we can reasonably “break down” intersections.

2. In Subsection 2.2, we followed through with that idea by breaking down {x1, . . . , xm}. (More
accurately, we started with it “broken down”, and showed that we can “stitch it back together”.)
We also used some wishful thinking: if each broken down sum was 1, then we could add all these
sums together, element-by-element, until we got what we wanted.

3. Finally, we showed in Subsection 2.3 that each broken down sum was indeed 1.
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